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3 Sobolev Spaces

Exercise 3.1. Let u ∈ Lip(Ω) and denotes by L its best Lipschitz constant. Then we
can extend it to the whole Rd by letting

ũ(x) = inf{u(y) + L|x − y| : y ∈ Ω}.

We want to prove that

v ∈ Lip(Rd) ∩ L∞
loc(Rd) ⇒ Dv ∈ L∞(Rd). (1)

Once this is done, then we can conclude :

u ∈ Lip(Ω) ∩ L∞(Ω) ⇒ ũ ∈ Lip(Rd) ∩ L∞
loc(Rd) ⇒ Dũ ∈ L∞(R) ⇒ Du ∈ L∞(Ω)

and therefore u ∈ W 1,∞(Ω).
We now prove (1). Let ρε be standard mollifiers and vε = v∗ρε. Then vε is L-Lipschitz

since

|vε(x) − vε(y)| ≤
∫
Rd

|v(x − t) − v(y − t)|ρε(t)dt ≤ L|x − y|
∫
Rd

ρε = L|x − y|.

Since vε is smooth, we know by the classical theory that ∥Dvε∥L∞(Rd) ≤ L. In particular
∥∂ivε∥L∞(Rd) ≤ L for every i = 1, . . . , n and every ε > 0. By Banach-Alaoglu theorem
there exists a sequence εk → 0 and zi ∈ L∞(Rd) such that ∂ivεk

→ zi weakly* in L∞(Rd).
We prove that zi = ∂iv, being zi ∈ L∞(Rd), this will conclude the proof. For every
φ ∈ C∞

c (Rd) and every k ∈ N it holds∫
Rd

vεk
∂iφdx = −

∫
Rd

φ∂ivεk
dx.

Letting k → ∞ we get ∫
Rd

v∂iφdx = −
∫
Rd

φzidx,

since vεk
→ v uniformly and therefore in L1

loc(Rd) and since ∂ivεk
→ zi weakly* in L∞(Rd).

This shows that zi = ∂iv and concludes the proof.

Exercise 3.2. Since u ∈ W 1,p
0 (Ω), there exists a sequence uε ∈ C∞

c (Ω) such that uε → u
in W 1,p(Ω). From the proof of the chain rule formula we deduce that G(uε) → G(u)
in W 1,p(Ω), thus it is enough to prove that G(uε) ∈ W 1,p

0 (Ω) for every ε > 0. Since
uε ∈ C∞

c (Ω) and G(0) = 0 we get that suppG(uε) is compactly contained in Ω, which
together with G(uε) ∈ W 1,p(Ω), give G(uε) ∈ W 1,p

0 (Ω). Indeed we could just mollify the
whole function G(uε), getting a sequence (G(uε))δ ∈ C∞

c (Ω) such that (G(uε))δ → G(uε)
in W 1,p(Ω), as δ → 0.
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Exercise 3.3. Let u(x) = |x|−α, α > 0. Note that u ̸∈ C0(Ω) since u(x) → +∞ as
x → 0. We have ∫

B1

|u(x)|2 dx =
∫

B1

1
|x|2α

dx = 2π

∫ 1

0

1
r2α−1 dr.

Thus u ∈ L2(Ω) if and only if α < 1. We now compute its weak derivative. Let φ ∈
C∞

c (Ω;R2), we have

⟨∇u, φ⟩ = −⟨u, div φ⟩ = − lim
ε→0

∫
B1\Bε

u(x)div φ(x) dx

= − lim
ε→0

(∫
∂Bε

u(x)φ(x) · n dσ −
∫

B1\Bε

∇u(x) · φ(x) dx

)
. (2)

The first term can be estimated as∣∣∣∣∫
∂Bε

u(x)φ(x) · n dσ

∣∣∣∣Cε1−α∥φ∥L∞(B1), (3)

that goes to zero, as ε → 0, since α < 1. Moreover u ∈ C1(B1 \ Bε), thus

∇u(x) = −α
x

|x|α+2 , in B1 \ Bε.

Thus, in order to have ∇u at least in L1, we need to have x|x|−2−α ∈ L1(B1), which
amounts to ∫

B1

1
|x|α+1 dx = 2π

∫ 1

0

1
rα

< ∞,

from which, together with (2) and (3), we also deduce that u ∈ W 1,1(Ω) with ∇u =
−α x

|x|α+2 . Finally,∫
B1

|∇u(x)|2 dx = α2
∫

B1

1
|x|2α+2 dx = 2πα2

∫ 1

0

1
r2α+1 dr,

and this is finite if and only if α < 0, from which we conclude that it does not exists
α > 0 such that u ∈ H1(Ω).

Note that by the previous computations we also get u ∈ W 1,p(Ω) for all p < 2 if
α < 2−p

p
< 1.

Exercise 3.4. Note that the functions f(x) = max{x, 0} and g(x) = max{−x, 0} are
Lipschitz functions from R to R. Moreover

f ′(x) = χx>0 and g′(x) = −χx<0.
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So that u+ =

f(u), u− = g(u) ∈ W 1,p(Ω) and moreover ∂iu
+ = f ′(u)∂iu = χu>0∂iu and ∂iu

− =
−χu<0∂iu, from which we also deduce |u| = u+ + u− ∈ W 1,p(Ω) with

∂i|u| = (χu>0 − χu<0)∂iu.

We now note that min{u, M} = min{u − M, 0} + M = − max{M − u, 0} + M and
max{u, M} = max{u − M, 0} + M . Thus by the previous computations we deduce that
the truncated function TMu ∈ W 1,p(Ω).

Exercise 3.5. We compute

∂h
i u(x) − ∂iu(x) = u(x + hei) − u(x)

h
− ∂iu(x) = 1

h

∫ 1

0

d

dt
u(x + thei) dt − ∂iu(x)

=
∫ 1

0
∇u(x + thei) · ei dt − ∂iu(x) =

∫ 1

0
(∂iu(x + thei) − ∂iu(x)) dt,

and by Jensen’s inequality

∥∂h
i u − ∂iu∥p

Lp(Rd) ≤
∫ 1

0

∫
Rd

|∂iu(x + thei) − ∂iu(x))|p dxdt . (4)

Note that the computations we did to show the previous inequality required that u was
smooth (or at least C1). Thus, to be precise, one at first proves that (4) holds for every
smooth function u, and then by density, it holds for every u ∈ W 1,p(Rd).

Since the translation operator is continuous in Lp(Rd) we get that

lim
h→0

∫
Rd

|∂iu(x + thei) − ∂iu(x))|p dx → 0

for almost every t ∈ (0, 1), and moreover∫
Rd

|∂iu(x + thei) − ∂iu(x))|p dx ≤ C

∫
Rd

|∂iu(x)|p dx ∈ L1(0, 1).

Thus, by the Lebesgue dominated convergence, we conclude

lim
h→0

∥∂h
i u − ∂iu∥Lp(Rd) = 0.
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