

3 Sobolev Spaces

Exercise 3.1. Let $u \in \text{Lip}(\Omega)$ and denotes by L its best Lipschitz constant. Then we can extend it to the whole \mathbb{R}^d by letting

$$\tilde{u}(x) = \inf\{u(y) + L|x - y| : y \in \Omega\}.$$

We want to prove that

$$v \in \text{Lip}(\mathbb{R}^d) \cap L_{\text{loc}}^\infty(\mathbb{R}^d) \Rightarrow Dv \in L^\infty(\mathbb{R}^d). \quad (1)$$

Once this is done, then we can conclude :

$$u \in \text{Lip}(\Omega) \cap L^\infty(\Omega) \Rightarrow \tilde{u} \in \text{Lip}(\mathbb{R}^d) \cap L_{\text{loc}}^\infty(\mathbb{R}^d) \Rightarrow D\tilde{u} \in L^\infty(\mathbb{R}^d) \Rightarrow Du \in L^\infty(\Omega)$$

and therefore $u \in W^{1,\infty}(\Omega)$.

We now prove (1). Let ρ_ε be standard mollifiers and $v_\varepsilon = v * \rho_\varepsilon$. Then v_ε is L -Lipschitz since

$$|v_\varepsilon(x) - v_\varepsilon(y)| \leq \int_{\mathbb{R}^d} |v(x-t) - v(y-t)| \rho_\varepsilon(t) dt \leq L|x - y| \int_{\mathbb{R}^d} \rho_\varepsilon = L|x - y|.$$

Since v_ε is smooth, we know by the classical theory that $\|Dv_\varepsilon\|_{L^\infty(\mathbb{R}^d)} \leq L$. In particular $\|\partial_i v_\varepsilon\|_{L^\infty(\mathbb{R}^d)} \leq L$ for every $i = 1, \dots, n$ and every $\varepsilon > 0$. By Banach-Alaoglu theorem there exists a sequence $\varepsilon_k \rightarrow 0$ and $z_i \in L^\infty(\mathbb{R}^d)$ such that $\partial_i v_{\varepsilon_k} \rightarrow z_i$ weakly* in $L^\infty(\mathbb{R}^d)$. We prove that $z_i = \partial_i v$, being $z_i \in L^\infty(\mathbb{R}^d)$, this will conclude the proof. For every $\varphi \in C_c^\infty(\mathbb{R}^d)$ and every $k \in \mathbb{N}$ it holds

$$\int_{\mathbb{R}^d} v_{\varepsilon_k} \partial_i \varphi dx = - \int_{\mathbb{R}^d} \varphi \partial_i v_{\varepsilon_k} dx.$$

Letting $k \rightarrow \infty$ we get

$$\int_{\mathbb{R}^d} v \partial_i \varphi dx = - \int_{\mathbb{R}^d} \varphi z_i dx,$$

since $v_{\varepsilon_k} \rightarrow v$ uniformly and therefore in $L_{\text{loc}}^1(\mathbb{R}^d)$ and since $\partial_i v_{\varepsilon_k} \rightarrow z_i$ weakly* in $L^\infty(\mathbb{R}^d)$. This shows that $z_i = \partial_i v$ and concludes the proof.

Exercise 3.2. Since $u \in W_0^{1,p}(\Omega)$, there exists a sequence $u_\varepsilon \in C_c^\infty(\Omega)$ such that $u_\varepsilon \rightarrow u$ in $W^{1,p}(\Omega)$. From the proof of the chain rule formula we deduce that $G(u_\varepsilon) \rightarrow G(u)$ in $W^{1,p}(\Omega)$, thus it is enough to prove that $G(u_\varepsilon) \in W_0^{1,p}(\Omega)$ for every $\varepsilon > 0$. Since $u_\varepsilon \in C_c^\infty(\Omega)$ and $G(0) = 0$ we get that $\text{supp}G(u_\varepsilon)$ is compactly contained in Ω , which together with $G(u_\varepsilon) \in W^{1,p}(\Omega)$, give $G(u_\varepsilon) \in W_0^{1,p}(\Omega)$. Indeed we could just mollify the whole function $G(u_\varepsilon)$, getting a sequence $(G(u_\varepsilon))_\delta \in C_c^\infty(\Omega)$ such that $(G(u_\varepsilon))_\delta \rightarrow G(u_\varepsilon)$ in $W^{1,p}(\Omega)$, as $\delta \rightarrow 0$.

Exercise 3.3. Let $u(x) = |x|^{-\alpha}$, $\alpha > 0$. Note that $u \notin C^0(\Omega)$ since $u(x) \rightarrow +\infty$ as $x \rightarrow 0$. We have

$$\int_{B_1} |u(x)|^2 dx = \int_{B_1} \frac{1}{|x|^{2\alpha}} dx = 2\pi \int_0^1 \frac{1}{r^{2\alpha-1}} dr.$$

Thus $u \in L^2(\Omega)$ if and only if $\alpha < 1$. We now compute its weak derivative. Let $\varphi \in C_c^\infty(\Omega; \mathbb{R}^2)$, we have

$$\begin{aligned} \langle \nabla u, \varphi \rangle &= -\langle u, \operatorname{div} \varphi \rangle = -\lim_{\varepsilon \rightarrow 0} \int_{B_1 \setminus B_\varepsilon} u(x) \operatorname{div} \varphi(x) dx \\ &= -\lim_{\varepsilon \rightarrow 0} \left(\int_{\partial B_\varepsilon} u(x) \varphi(x) \cdot n d\sigma - \int_{B_1 \setminus B_\varepsilon} \nabla u(x) \cdot \varphi(x) dx \right). \end{aligned} \quad (2)$$

The first term can be estimated as

$$\left| \int_{\partial B_\varepsilon} u(x) \varphi(x) \cdot n d\sigma \right| \leq C \varepsilon^{1-\alpha} \|\varphi\|_{L^\infty(B_1)}, \quad (3)$$

that goes to zero, as $\varepsilon \rightarrow 0$, since $\alpha < 1$. Moreover $u \in C^1(B_1 \setminus B_\varepsilon)$, thus

$$\nabla u(x) = -\alpha \frac{x}{|x|^{\alpha+2}}, \quad \text{in } B_1 \setminus B_\varepsilon.$$

Thus, in order to have ∇u at least in L^1 , we need to have $x|x|^{-2-\alpha} \in L^1(B_1)$, which amounts to

$$\int_{B_1} \frac{1}{|x|^{\alpha+1}} dx = 2\pi \int_0^1 \frac{1}{r^\alpha} dr < \infty,$$

from which, together with (2) and (3), we also deduce that $u \in W^{1,1}(\Omega)$ with $\nabla u = -\alpha \frac{x}{|x|^{\alpha+2}}$. Finally,

$$\int_{B_1} |\nabla u(x)|^2 dx = \alpha^2 \int_{B_1} \frac{1}{|x|^{2\alpha+2}} dx = 2\pi \alpha^2 \int_0^1 \frac{1}{r^{2\alpha+1}} dr,$$

and this is finite if and only if $\alpha < 0$, from which we conclude that it does not exist $\alpha > 0$ such that $u \in H^1(\Omega)$.

Note that by the previous computations we also get $u \in W^{1,p}(\Omega)$ for all $p < 2$ if $\alpha < \frac{2-p}{p} < 1$.

Exercise 3.4. Note that the functions $f(x) = \max\{x, 0\}$ and $g(x) = \max\{-x, 0\}$ are Lipschitz functions from \mathbb{R} to \mathbb{R} . Moreover

$$f'(x) = \chi_{x>0} \quad \text{and} \quad g'(x) = -\chi_{x<0}.$$

So that $u^+ =$

$f(u), u^- = g(u) \in W^{1,p}(\Omega)$ and moreover $\partial_i u^+ = f'(u) \partial_i u = \chi_{u>0} \partial_i u$ and $\partial_i u^- = -\chi_{u<0} \partial_i u$, from which we also deduce $|u| = u^+ + u^- \in W^{1,p}(\Omega)$ with

$$\partial_i |u| = (\chi_{u>0} - \chi_{u<0}) \partial_i u.$$

We now note that $\min\{u, M\} = \min\{u - M, 0\} + M = -\max\{M - u, 0\} + M$ and $\max\{u, M\} = \max\{u - M, 0\} + M$. Thus by the previous computations we deduce that the truncated function $T_M u \in W^{1,p}(\Omega)$.

Exercise 3.5. We compute

$$\begin{aligned} \partial_i^h u(x) - \partial_i u(x) &= \frac{u(x + he_i) - u(x)}{h} - \partial_i u(x) = \frac{1}{h} \int_0^1 \frac{d}{dt} u(x + the_i) dt - \partial_i u(x) \\ &= \int_0^1 \nabla u(x + the_i) \cdot e_i dt - \partial_i u(x) = \int_0^1 (\partial_i u(x + the_i) - \partial_i u(x)) dt, \end{aligned}$$

and by Jensen's inequality

$$\|\partial_i^h u - \partial_i u\|_{L^p(\mathbb{R}^d)}^p \leq \int_0^1 \int_{\mathbb{R}^d} |\partial_i u(x + the_i) - \partial_i u(x)|^p dx dt. \quad (4)$$

Note that the computations we did to show the previous inequality required that u was smooth (or at least C^1). Thus, to be precise, one at first proves that (4) holds for every smooth function u , and then by density, it holds for every $u \in W^{1,p}(\mathbb{R}^d)$.

Since the translation operator is continuous in $L^p(\mathbb{R}^d)$ we get that

$$\lim_{h \rightarrow 0} \int_{\mathbb{R}^d} |\partial_i u(x + the_i) - \partial_i u(x)|^p dx \rightarrow 0$$

for almost every $t \in (0, 1)$, and moreover

$$\int_{\mathbb{R}^d} |\partial_i u(x + the_i) - \partial_i u(x)|^p dx \leq C \int_{\mathbb{R}^d} |\partial_i u(x)|^p dx \in L^1(0, 1).$$

Thus, by the Lebesgue dominated convergence, we conclude

$$\lim_{h \rightarrow 0} \|\partial_i^h u - \partial_i u\|_{L^p(\mathbb{R}^d)} = 0.$$